If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+x^2+15=140
We move all terms to the left:
4x^2+x^2+15-(140)=0
We add all the numbers together, and all the variables
5x^2-125=0
a = 5; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·5·(-125)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50}{2*5}=\frac{-50}{10} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50}{2*5}=\frac{50}{10} =5 $
| 2(5-a)=5a+13 | | −(5/6)y−(3/4)=(5/9) | | 19=-7x+4x | | 5x-62+3x+26=60 | | -1/2+n=1/4 | | −5/6y−3/4=5/9 | | 10-2a=5a+13 | | 6(2+5a)=31 | | 3y+6y+18=90 | | 3y=6y+18=90 | | 12x/10=5/10 | | 3y*6y+18=90 | | 2(x-3)^3+128=0 | | √4x+14=32 | | 1/2(6-y)-y=0 | | 16w-10w-3w+3=15 | | (0.1-x)/(x)=0.7 | | 5=6(q-5 | | 7y-3=-31 | | 9u-6u-3u+2u-1=19 | | 5y(5)=14(4) | | 4x+34=86 | | 5x(5)=14(4) | | 12y-11=13 | | 9y2-96y+24=0 | | 14k+k-7k-7k=16 | | 4+7x=3-20x | | -7=7d-7 | | 2u+3u^2-8=0 | | x+2-3x+4=4x+3-x+2 | | 11v+5v+4v-17=3 | | 2/10+x/100=5/10 |